In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
In [2]:
# Basic IO
filename = 'clustering/dataset.csv'
dataset = pd.read_csv(filename)
# Randomize Dataset
dataset = dataset.sample(frac=1,random_state=32).reset_index()
dataset.head()
Out[2]:
In [3]:
# Split Into Training & Testing Sets
train, test = train_test_split(dataset,test_size=0.33)
# Write to Text Data
train.to_csv('clustering/train_data.csv',index=False)
test.to_csv('clustering/test_data.csv',index=False)
In [4]:
train.info()
In [5]:
test.info()